A spike sorting framework using nonparametric detection and incremental clustering
نویسندگان
چکیده
We introduce a statistical computing framework to address two important issues in spike sorting: flexible spike shape modeling and realtime spike clustering. In this framework, spikes are detected based on a nonparametric shape distribution; detected spikes are further grouped by an incremental clustering algorithm involving the second-order statistics–covariance matrix. We performed experiments on both simulated and real signals to study spike detection accuracy and cluster separation. r 2006 Elsevier B.V. All rights reserved.
منابع مشابه
A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملYASS: Yet Another Spike Sorter
Spike sorting is a critical first step in extracting neural signals from large-scale electrophysiological data. This manuscript describes an efficient, reliable pipeline for spike sorting on dense multi-electrode arrays (MEAs), where neural signals appear across many electrodes and spike sorting currently represents a major computational bottleneck. We present several new techniques that make d...
متن کاملA Non-parametric Bayesian Framework for Spike Sorting Using Optimal Quantization
This paper describes an approach that performs spike sorting by a nonparametric density estimation technique under a Bayesian framework. The technique is based on an optimal quantization method. We performed experiments on simulated and real spike signals. The results are comparable with what is reported in the literature.
متن کاملNeural signal classification using a simplified feature set with nonparametric clustering
This paper presents a spike sorting method using a simplified feature set with a nonparametric clustering algorithm. The proposed feature extraction algorithm is efficient and has been implemented with a custom integrated circuit chip interfaced with the PC. The proposed clustering algorithm performs nonparametric clustering. It defines an energy function to characterize the compactness of the ...
متن کاملFast and accurate spike sorting of high-channel count probes with KiloSort
New silicon technology is enabling large-scale electrophysiological recordings in vivo from hundreds to thousands of channels. Interpreting these recordings requires scalable and accurate automated methods for spike sorting, which should minimize the time required for manual curation of the results. Here we introduce KiloSort, a new integrated spike sorting framework that uses template matching...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 69 شماره
صفحات -
تاریخ انتشار 2006